Titel: | Zur Theorie der Dampfdrosselung in den Einlasskanälen der Dampfmaschinen. |
Autor: | Adolf Langrod |
Fundstelle: | Band 320, Jahrgang 1905, S. 751a |
Download: | XML |
Zur Theorie der Dampfdrosselung in den
Einlasskanälen der Dampfmaschinen.Zu diesem
Artikel bin ich durch die Arbeiten von Gutermuth, „Mitteilung. über
Forschungsarbeiten“, Heft 19, und Bloess, „Zeitschr. d. Ver. deutsch. Ing.“ 1905, No.
17, angeregt worden. Ich betrachte jedoch den Gegenstand von einem
anderen Gesichtspunkte aus und bin ich auch zu anderen Resultaten
gelangt.
Von Ing. Adolf Langrod,
Wien.
Zur Theorie der Dampfdrosselung in den Einlasskanälen der
Dampfmaschinen.
Um sich ein klares Bild über die verwickelten Vorgänge, die sich auf dem Wege
des Dampfes vom Schieberkasten bis zum Dampfzylinder und in letzterem abspielen, zu
verschaffen, betrachten wir folgenden einfachen Fall.
Denken wir uns eine, links (Fig. 1) an ein grosses
Dampfgefäss angeschlossene Laval-Düse, die rechts in
einen Zylinder ausläuft (s. Fig. 1).
Es werden bezeichnet:
die Querschnitte mit F,
die Drücke mit p,
die spez. Volumina mit v,
die Geschwindigkeiten mit w.
Die Zeiger 0, 1 und 2 entsprechen beziehungsweise dem Gefässinnern, dem
kleinsten Querschnitte und der zylindrischen Verlängerung der Düse.
Textabbildung Bd. 320, S. 751
Fig. 1.
Der aus dem Ausflussgefässe ausströmende Dampf wird als trocken gesättigt, seine
Zustandsänderung in der Düse adiabatisch und die Zustandsgleichung in der von Zeuner angenäherten Form . . . pvk = konstant . . . angenommen.
Der Druck im Ausflussgefässe soll während der Ausströmung unveränderlich bleiben.
Sehen wir von Strömungswiderständen ab, so entsprechen infolge der Umkehrbarkeit des
ganzen Prozesses, so lange die Ausflussgeschwindigkeit des Dampfes an der engsten
Stelle kleiner als die Schallgeschwindigkeit ist, gleichen Querschnitten vor und
nach der engsten Stelle gleiche Dampfzustände. Der Expansion des Dampfes bis zu der
engsten Stelle folgt von da an eine Kompression auf den in der zylindrischen
Düsenverlängerung herrschenden Druck. Der rechts von der engsten Stelle sich in
der Düse abspielende Prozess ist eine Umkehrung des sich links abspielenden
Prozesses.
Die betrachtete Erscheinung ist ganz analog derjenigen eines Stromes tropfbarer
Flüssigkeit in der oben angegebenen Düse und lässt sich gut durch die graphische
Darstellung Fig. 2 überblicken.
Textabbildung Bd. 320, S. 751
Fig. 2.
Diese Darstellung, in welcher die Querschnitte als Abszissen und die Drücke als
Ordinaten gewählt wurden, entspricht der adiabatischen Expansion des Dampfes für den
betrachteten Fall.
Die Gleichung dieser Adiabate lautet:
\left(\frac{F}{F_2}\right)^2=\frac{\left(\frac{p_2}{p_0}\right)^{\frac{2}{4}}-\left(\frac{p_2}{p_0}\right)^{\frac{k+1}{k}}}{\left(\frac{p}{p_0}\right)^{\frac{2}{k}}-\left(\frac{p}{p_0}\right)^{\frac{k+1}{k}}} . . . . 1)
Der Dampfströmung vom Ausflussgefässe bis zur engsten Stelle entspricht der
Kurventeil vom unendlich fernen Punkte a bis zum Punkte
b; von da an kehrt sich der Prozess um und daher
wird auch die Adiabate in Fig. 2 in
entgegengesetzter Richtung durchlaufen, also von b bis
c.
Der Vorgang bei der Strömung einer tropfbaren Flüssigkeit ist ganz dem obigen
ähnlich, nur sieht die (F p)-Kurve anders aus (s. Fig. 3) entsprechend der Gleichung
\left(\frac{F}{F_2}\right)^2=\frac{p_0-p_2}{p_0-p}.
Diese Darstellung der Dampfströmung in der Laval-Düse,
für den Fall, dass die Dampfgeschwindigkeit in dem kleinsten Düsenquerschnitte
kleiner als die Schallgeschwindigkeit ist, stimmt mit der von Stodola„Die
Dampfturbinen“, Berlin, 1905, III. Auflage, S. 53. In der I. und
II. Auflage erklärt Stodola den Vorgang
wesentlich anders. gegebenen im Prinzip überein.
Textabbildung Bd. 320, S. 752
Fig. 3.
Zeuner„Die Dampfturbinen“, Berlin, 1905, III. Auflage, S. 53.
In der I. und II. Auflage erklärt Stodola
den Vorgang wesentlich anders. nahm an, dass der Dampf
in unserem Falle schon in dem kleinsten Düsenquerschnitte den äusseren Druck
erreichen würde. Auf dieser Annahme basieren die in der ersten Anmerkung genannten
Arbeiten von Gutermuth und Bloess.
So nahe es auch scheinbar lag, aus dem Vergleiche der Dampfströmung mit der Strömung
tropfbarer Flüssigkeiten Aufklärung über den behandelten Strömungsvorgang zu
verschaffen, so haben uns diese doch erst die Versuche von StodolaZeuner,„Mechanische Wärmetheorie“, 1901, 2. Bd. und BüchnerBüchner,„Mitteilungen über Forschungsarbeiten“, Berlin, Heft
18. gebracht.Eine von
mir verfasste, eingehende Untersuchung der Dampfströmung in dem uns hier
interessierenden Falle (siehe „Zeitschr. des österr. Ing.- und
Arch.-Vereins“, 1905, S. 580).
Für die Geschwindigkeit an der engsten Stelle gilt folgende Gleichung:
{w_1}^2=\frac{2\,g\,k}{k-1}\,p_0\,v_0\,\left[1-\left(\frac{p_1}{p_0}\right)^{\frac{k-1}{k}}\right] . . . 2)
Diese Geschwindigkeit wird beim kritischen Druckverhältnisse
\left(\frac{p_1}{p_0}\right)=\left(\frac{2}{k+1}\right)^{\frac{k}{k-1}} . . . . 3)
zur Schallgeschwindigkeit
{w_1}^2=\frac{2\,g\,k}{k+1}\,p_0\,v_0 . . . . 4)
Die Geschwindigkeit in der zylindrischen Düsenverlängerung erhalten wir aus der
Kontinuitätsgleichung
\frac{F_1\,w_1}{v_1}=\frac{F_2\,w_2}{v_2}
und es ergibt sich, wenn wir das Querschnittsverhältnis
\frac{F_1}{F_2}=n setzen,
w_2=n\,\frac{v_2}{v_1}\,w_1
oder, da
\frac{v_2}{v_1}=\left(\frac{p_1}{p_2}\right)^{\frac{1}{k}}
ist,
w_2=n\,\left(\frac{p_1}{p_2}\right)^{\frac{1}{k}}\,w_1 . . . . . 5)
Bezeichnen wir mit wd,
pd und vd die Geschwindigkeit,
den Druck und das spez. Volumen des Dampfes im Zylinder für den Fall, dass an
der engsten Düsenstelle gerade die Schallgeschwindigkeit erreicht wurde, so ergibt
sich aus den Gleichungen 3), 4) und 5)
w_d=\frac{n\,\sqrt{\frac{2\,g\,k}{k+1}}\,p_0\,v_0}{\left(\frac{p_d}{p_0}\right)^{\frac{1}{k}}\,\left(\frac{k+1}{2}\right)^{\frac{1}{k-1}}} . . . . 6)
Das Druckverhältnis \frac{p_d}{p_0} bestimmt sich aus Gleichung 1),
nachdem für \left(\frac{p_1}{p_0}\right) das kritische Druckverhältnis aus Gleichung 3) eingesetzt
wurde,
n^2=\frac{2}{k-1}\,\left(\frac{k+1}{2}\right)^{\frac{k-1}{n-1}}\,\left[\left(\frac{p_d}{p_0}\right)^\frac{2}{k}-\left(\frac{p_d}{p_0}\right)^{\frac{k-1}{k}}\right] . 7)
Bezeichnen wir mit D das einen
Düsenquerschnitt in der Zeiteinheit durchströmende Dampfgewicht, so ist
D=\frac{F_1\,w_1}{v_1}.
Da an der engsten Stelle der Düse keine höhere Geschwindigkeit
als die Schallgeschwindigkeit herrschen kann, so erhalten wir für das maximale in
der Zeiteinheit die Düse durchströmende Dampfgewicht, das wir mit Dd bezeichnen wollen,
den Wert
D_d=F_1\,\sqrt{g\,k}\,\left(\frac{2}{k-1}\right)^{\frac{k-1}{k-1}}\cdot \frac{p_0}{v_0} . . 8)
Denken wir uns jetzt in dem zylindrischen Düsenteile einen beweglichen Kolben. An dem
Strömungsprozesse wird sich dadurch so lange nichts ändern, als die
Kolbengeschwindigkeit c gleich der Dampfgeschwindigkeit
w2 ist. Wird die
Kolbengeschwindigkeit c grösser als die aus Gleichung
6) bestimmte Dampfgeschwindigkeit wd, so kann der Dampf dem Kolben nicht folgen. Es
tritt weniger Dampf in den Zylinder ein, als zur Erhaltung des Druckes pd notwendig wäre, und
es findet daher eine Expansion des Dampfes statt.
Denken wir uns unter der zylindrischen Düsenverlängerung den Dampfzylinder einer
Dampfmaschine, unter der Laval-Düse selbst den
Einlasskanal und unter dem Ausflussgefäss den Schieberkasten, so ergibt sich aus
unserer Betrachtung, dass die Dampfdrosselung erst dann
anfängt, wenn an der engsten Einlasstelle der Dampf die Schallgeschwindigkeit
erreicht.
In der Einströmkurve des Indikatordiagrammes können wir demnach zwei Teile
unterscheiden:Wenn beim Hubanfang
der Druck im schädlichen Raum gleich dem Druck im Schieberkasten angenommen
wird. Letzterer wird als unveränderlich vorausgesetzt. von der
Totlage bis zum Drosselungsanfang und von da an bis zum Füllungsschluss. Den ersten
Teil erhalten wir aus der Bedingung, dass die Kolbengeschwindigkeit c gleich der Dampfgeschwindigkeit w2 sein muss. Es gilt
daher:
c=\sqrt{\frac{2\,g\,k}{k-1}\,p_0\,v_0\,\left[1-\left(\frac{p_2}{p_0}\right)^{\frac{k-1}{k}}\right]} . . 9)
Da die Kolbengeschwindigkeit für jede Maschine als Funktion des Kolbenweges
bestimmbar ist, so lässt sich für jede Kolbenstellung das Druckverhältnis \left(\frac{p_2}{p_0}\right)
aus Gleichung 9) berechnen. Die so erhaltene Kurve wird so lange fortgesetzt, bis
das Druckverhältnis \frac{p_2}{p_0}=\frac{p_d}{p_0} nach Gleichung 7), bezw. die Kolbengeschwindigkeit
c = wd nach Gleichung 6) für den Drosselungsanfang
erreicht wird. Von
da an beginnt der zweite Teil der Einströmungskurve, nämlich die Drosselungskurve.
Der Anfangspunkt dieser Kurve wird am besten festgestellt, indem man in ein
Geschwindigkeits–Weg–Diagramm, in welchem die Abszissen die Kolbenwege und die
Ordinaten die Geschwindigkeiten darstellen, die Kurve für die
Kolbengegeschwindigkeiten und jene für die Drosselungsgeschwindigkeiten wd (nach Gleichung 6)
einzeichnet. Der Schnittpunkt beider Kurven gibt die Kolbenlage für den
Drosselungsanfang an. Hierbei ist zu bemerken, dass das in Gleichung 6) auftretende
und mit n bezeichnete Verhältnis der Kanaleröffnung zur
Kolbenfläche für jede Steuerung als Funktion des Kolbenweges gegeben ist.
Die Drosselungskurve selbst wird auf folgende Weise bestimmt:
Während der Drosselung strömt in den Dampfzylinder in der Zeiteinheit die mit Dd bezeichnete und aus
Gleichung 8) bestimmbare Dampfmenge, daher in der Zeit dt die Menge
d\,D=D_d\cdot dt=F_1\,\sqrt{g\,k\,\left(\frac{2}{k+1}\right)^{\frac{k-1}{k-1}}\cdot \frac{p_0}{v_0}}\cdot d\,t.
Wird der um die Länge des auf die Kolbenfläche reduzierten
schädlichen Raumes vermehrte Kolbenweg mit s
bezeichnet, so ist
dt=\frac{ds}{c};
daher
d\,D=\sqrt{g\,k\,\left(\frac{2}{k+1}\right)^{\frac{k+1}{k-1}}\cdot \frac{p_0}{v_0}}\cdot \frac{F_1}{c}\cdot ds.
Nimmt s beim Drosselungsanfang
den Wert sd an, so gibt
der Ausdruck
F_2\,s_d+v_d\,\int_{s_d}^a\,\frac{D_d}{c}\,ds
das Volumen des bei der Kolbenlage s im Dampfzylinder sich befindenden Dampfes für den Druck pd an. Das wirkliche
Dampfvolumen ist aber für die Kolbenlage s:
F . s.
Nehmen wir die für die Expansion des Dampfes im Dampfzylinder durchwegs angewendete
Zustandsgleichung
p v = konstant
an, so ergibt sich
\frac{F\cdot s}{F\,s_d+v_d\,\sqrt{g\,k\,\left(\frac{2}{k+1}\right)^{\frac{k+1}{k-1}}\cdot \frac{p_0}{v_0}}\,\int_{s_d}^s\,\frac{F_1}{c}\,ds}=\frac{p_d}{p} . 10)
Da sowohl der Kanaleröffnungsquerschnitt F1, wie auch die
Kolbengeschwindigkeit c als Funktionen des Kolbenweges
gegeben sind, so lässt sich das Integral im Nenner der Gleichung 10) entweder
analytisch oder für verschiedene Kolbenlagen graphisch durch Quadratur
bestimmen.
Die Gleichung 10) gibt uns die Drosselungskurve an.
Unterziehen wir jetzt die erhaltenen Ergebnisse einer Besprechung und wenden wir uns
zunächst dem ersten Teil der Einströmungskurve zu.
Aus Gleichung 9) ergibt sich
\left(\frac{p_2}{p_0}\right)^{\frac{k-1}{k}}=1-\frac{c^2}{\frac{2\,g\,k}{k-1}\,p_0\,v_0}
Da für den trocken-gesättigten Dampf
pv1 . 0646 = 1 . 775 [p
in kg/qcm und v in ccm] . 11)
und
k = 1 . 135
ist, so gilt
\left(\frac{p_2}{p_0}\right)^{0\cdot 119}=1-\frac{c^2}{2,827,000\,{p_0}^{0\cdot 06}} [p in kg/qcm; c in m] . . 12)
Das Druckverhältnis \frac{p_2}{p_0} hängt demnach nur wenig vom Drucke p0 im Schieberkasten
ab. Setzen wir p0 = 10
kg/qcm, so
ergibt sich
\left(\frac{p_2}{p_0}\right)^{0\cdot 119}=1-0\cdot 00000031\,c^2 [c in m] . 12*)
Diese Gleichung lehrt uns, dass der Spannungsabfall, bei
gebräuchlichen Kolbengeschwindigkeiten, während der Einströmung bis zum
Drosselungsanfange ein ganz geringer ist und dass daher \left(\frac{p_2}{p_0}\right)=1 und demnach auch
\left(\frac{p_d}{p_0}\right)=1 gesetzt werden kann.
Aus Gleichung 6) ergibt sich nach Einsetzung der Werte für k,
g und unter Berücksichtigung der Gleichung 11) und des Umstandes, dass
\left(\frac{p_d}{p_0}\right)=1 gesetzt werden kann,
wd =
260 n p00 .03 . . . . 13)
Die Drosselungsgeschwindigkeit ist demnach nur sehr wenig
abhängig von dem Schieberkastendrucke p0.
Setzen wir p0 = 10 kg/qcm, so lautet
Gleichung 13):
wd =
278 . 7 n [in m] . . . . 13*)
Bezeichnen wir mit cm die mittlere Kolbengeschwindigkeit, mit m die Anzahl der Kurbelumdrehungen i. d. Minute, mit
r den Kurbelradius und mit a den von der Kurbel von der Totlage aus beschriebenen Winkel; ferner
sollen F1 max bezw. nmax die grösste Kanaleröffnung bezw. das grösste
Querschnittsverhältnis n bedeuten.
Gewöhnlich wird folgende Beziehung eingehalten:
\frac{F_{1\,max}}{F_2}=n_{\mbox{max}}=\frac{c}{30}.
Daher ergibt sich aus Gleichung 13*)
\frac{w_d}{c_m}=9\cdot 29\,\frac{n}{n_{\mbox{max}}}=9\cdot 29\,\frac{F_1}{F_{1\,max}} . . 14)
Da
c\,\sim\,\frac{\pi\,n}{30}\,r\,\mbox{sin}\,\alpha,
und
c_m=\frac{r\,n}{15},
so ist
\frac{c}{c_m}\,\overset{\infty}{=}\,\frac{\pi}{2}\,\mbox{sin}\,\alpha.
Dieses Verhältnis \frac{c}{c_m} wird für α = 90° ein Maximum und zwar
\left(\frac{c}{c_m}\right)_{\mbox{max}}\,\overset{\infty}{=}\,\frac{\pi}{2}=1\cdot 57.
Das Verhältnis \frac{w_d}{c_m} kann nicht grösser als \left(\frac{c}{c_m}\right)_{\mbox{max}}
werden, deshalb muss nach Gleichung 14) \frac{F_1}{F_{1\,max}} kleiner als \frac{1}{9\cdot 29}\cdot \left(\frac{c}{c_m}\right)_{\mbox{max}} sein oder
es muss
sein.
\underline{\frac{F_{1\,max}}{F_1}}\,>\,5\cdot 9
Es folgt daraus, dass die Kanaleröffnung für den Anfang der Drosselung gewöhnlich
kleiner als der sechste Teil der maximalen Kanaleröffnung ist. Aus Gleichung 10)
folgt ferner, dass die Drosselungskurve oberhalb der vom Punkte mit den Koordinaten
sd, p0 gezeichneten
Hyperbel liegen wird.
Diese Betrachtung zeigt uns, dass, infolge der Kolbengeschwindigkeit, vor der
Drosselung kaum ein nennenswerter Druckabfall stattfindet. Dieser Druckabfall ist
auch während der durch ungenügende Kanaleröffnung unmittelbar verursachten
Drosselung kein bedeutender. Wenn uns die Praxis einen grösseren Druckabfall dennoch
aufweist, und zwar während der ganzen Einströmzeit, so ist die Ursache noch in
anderen Umständen zu suchen. Da wären vor allem die Veränderlichkeit des Druckes im
Schieberkasten und die Strömungswiderstände zu nennen; auch sind die betrachteten
Vorgänge durchaus keine feststehenden, als welche sie teilweise angenommen wurden.
Alle diese Umstände, die voneinander abhängig sind, bedürfen noch eingehender,
rechnerischer und experimenteller Verfolgung.